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ABSTRACT

A parametric study was conducted to assess the effect of thermal residual stresses

on the stress-strain response of a fiber-reinforced metal-matrix composite. The material

chosen for investigation was the SiC-vvhisker reinforced Al 6061 system. The effects of

fiber volume fraction, liber aspect ratio and fiber spacing were analyzed within the

framework, of axisymmetric finite-element models to determine the overall constitutive

response of the composite as well as to solve for local field quantities in the fiber and

matrix. The composite was modeled as a periodic array of cylindrical fibers, laterally

aligned in one model and staggered in the other. Perfect interfacial bonding and com-

plete fiber alignment with the tensile axis were assumed. The results indicated that (1)

composite stiffness, yield strength and work-hardening rate increased with increasing

volume fraction and fiber aspect ratio and (2) variations in fiber spacing primarily affect

work-hardening rate and have negligible effect on composite stiffness. It was found that

the presence of residual stresses affected the stress-strain behavior of the composite by

influencing the load transfer characteristics between the matrix and fiber as well as the

initiation and growth of plastic deformation in the matrix.

ui





bTTDLE R"?

MOK r
i - --G002

TABLE OF CONTENTS

I. INTRODUCTION 1

A. THERMAL RESIDUAL STRESSES IN METAL-MATRIX COMPOSITES 1

B. STRESS-STRAIN BEHAVIOR OF METAL-MATRIX COMPOSITES ... 5

C. RESEARCH OBJECTIVES AND OVERVIEW 8

II. EXPERIMENTAL APPROACH 10

A. NUMERICAL MODELING 10

1. Finite Element Modeling 12

2. Boundary Conditions 15

3. Applied Loading 17

4. Grid Independence 18

5. Model' Implementation 19

B. MATERIAL TESTING 19

III. RESULTS AND DISCUSSION 21

A. COMPARISON OF ALIGNED AND STAGGERED FIBER MODELS . 21

B. EFFECT OF FIBER VOLUME FRACTION 25

C. EFFECT OF FIBER ASPECT RATIO 25

D. EFFECT OF FIBER SPACING 31

E. EFFECT OF THERMAL RESIDUAL STRESSES 31

F. PLASTIC ZONE INITIATION AND GROWTH 36

1. Thermal Residual Stress Effects 36

2. Volume Fraction Effects 38

3. EfFects of Modeling Constraints 41

4. Fiber Spacing Effects 43

IV. CONCLUSIONS 46

APPENDIX A. SAMPLE ADINA INPUT FILE 47



APPENDIX B. ADINA MODIFICATIONS FOR STAGGERED FIBER

MODEL 51

APPENDIX C. DATA REDUCTION PROGRAMS 53

LIST OF REFERENCES 57

INITIAL DISTRIBUTION LIST 60

VI



LIST OF FIGURES

Figure 1. Optical Micrograph 11

Figure 2. Material Representations 14

Figure 3. Modeling Constraint Effects 22

Figure 4. Volume Fraction Effects 26

Figure 5. Fiber Aspect Ratio Effects 27

Figure 6. Effect of the Critical Fiber Aspect Ratio 28

Figure 7. Fiber Load-Bearing Behavior 29

Figure 8. Fiber Spacing Effects 32

Figure 9. Residual Stress and Volume Fraction Effects 33

Figure 10. Residual Stress and Modeling Constraint Effects 35

Figure 11. Plastic Zone Development- Residual Stress Effects 37

Figure 12. Plastic Zone Development-Volume Fraction Effects 39

Figure 13. Plastic Zone Development-Constraint Effects 42

Figure 14. Plastic Zone Development- Fiber Spacing Effects 44

vu



ACKNOWLEDGEMENTS

This author would like to take the opportunity to express his gratitude to several

individuals who have been influential in the successful completion of this thesis. First,

I would like to thank Professor Dutta for his patience and guidance throughout the

course of the study. Professor Salinas was instrumental, not only as a first-rate in-

structor, but also as an honest critic of this manuscript. Professor Cantin was influential

in the selection ofADINA as the software of choice to conduct the finite-element anal-

ysis. David Marco, Tom McCord and Charles Crow were of great assistance in pro-

viding computer support and fabricating material samples.

Of all those deserving credit for their role in this study, the one person most re-

sponsible for its completion and quality is my wife, Kristen. She patiently endured the

long hours of time spent away from home and was always ready with a word of en-

couragement when results had gone awry.

Vlll



I. LNTRODUCTION

Metal matrix composites are materials that combine a relatively soft metallic matrix

with a high-strength, high-stiffness reinforcement material that is typically a ceramic,

intermetallic, metalloid or metal. These materials are characterized either bv the nature

or the morphology of the reinforcement. Continuous fiber composites consist of fibers,

often in a laminar construction, spanning the entire length of the matrix material. Dis-

continuous fiber composites consist of short fibers or whiskers arranged in a random

fashion in the matrix. The degree of randomness as well as the length of the fibers can

be controlled, to an extent, through processing. Other metal matrix composite systems

such as particulate, flake and foam composites derive their names from the morphology

of the reinforcing material.

Wrought aluminum alloys, such as 2024, 6061 and 7075, reinforced with boron,

graphite, alumina or silicon carbide have been used extensively in applications as engine

or structural components. Some of the improvements in mechanical properties over the

unreinforced matrix include increased elastic modulus, tensile strength, wear resistance,

fatigue resistance, strength-to-weight ratio and thermal conductivity.

In order for optimal utilization of metal matrix composites in industry, detailed

knowledge of the factors affecting their thermal, electrical and mechanical properties

must be known.

A. THERMAL RESIDUAL STRESSES IN METAL-MATRIX COMPOSITES

Thermal residual stresses are generated in metal matrix composites during fabri-

cation due to the coefficient of thermal expansion (CTE) mismatch between the matrix

and reinforcing material. The exact nature of these stresses and their effect on the me-

chanical properties of the composite has been the subject of numerous investigations.

1



Examples of continuum mechanics applied to a thick-walled cylinder model under

internal pressure or containing a continuous fiber abound in the literature. DeSilva and

Chadwick [Ref. 1] used a continuous fiber model to investigate dimensional changes due

to temperature effects in iron-boron and copper-tungsten composites. Their results in-

dicated that matrix yielding occurred first at the fiber interface then spread radially out-

ward. Dvorak et al. [Ref. 2] used a linear elastic continuous fiber model to determine the

initial yield surface in the matrix due to temperature changes in the boron-aluminum

system. They determined that yielding occurred first at the interface and that a tem-

perature change as small as 10 - 20 °C was sufficient to result in localized yielding in the

matrix. Hoffman [Ref. 3] used a continuous fiber model to determine thermal stresses

induced during cooldown in the tungsten fiber reinforced 80Ni-20Cr matrix. It was

conjectured that the magnitude of these stresses would be sufficient to result in plastic

flow in one or both of the constituents. Garmong [Ref. 4] assumed one-dimensional

deformation while neglecting shear and poisson effects to calculate matrix stress, strain

and plastic work as a function of temperature change. He reported the residual stresses

in the matrix as tensile in nature with plastic strains reaching 0.32%. Earmme et al.

[Refs. 5,6] used a continuum mechanics based approach to investigate the stress states

around spherical, misfitting particles of high symmetry under the assumptions of a von

Mises yield criterion, linear and power-law strain hardening, and incremental plasticity.

Arsenault and Fisher [Ref. 7] used the results of electron microscopy and electron

diffraction experiments to conclude that thermal residual stresses in the matrix were

caused by CTE mismatch and that matrix strengthening was due to an enhanced dislo-

cation density in the matrix immediately adjacent to the fiber. It was postulated that

thermal residual stresses had little effect on matrix strength. In a companion study,

Arsenault [Ref. 8] compared experimental results with continuum mechanics predictions

and determined that the presence of a discontinuous fiber reinforcement resulted in levels



of strengthening much greater than predicted by theory. The cause of this discrepancy

was an enhanced dislocation density due to the CTE mismatch between the materials.

Arsenault and Taya [Refs. 9,10] used X-ray diffraction results and yield strength data in

tension and compression to determine the extent of thermal residual stresses in a SiC

whisker reinforced 6061 Aluminum composite. The experimental results were compared

with analytical results obtained using the modified shear-lag theory and the Eshelby

equivalent inclusion method. The results indicated that a tensile residual stress existed

in the matrix on a volume average basis, although tensile and compressive components

were distributed throughout. Both theoretical methods underpredicted the magnitude

of strengthening; however the Eshelby method predicted the correct qualitative trends

for low fiber aspect ratios. The shear-lag theory was seen as a crude approximation even

with the modification by Nardone and Prewo [Ref. 11] to account for tensile load

transfer at the fiber tip. A prismatic punching model was developed by Arsenault and

Shi [Ref. 12] to attempt to predict the increase in dislocation density in the matrix on

cooldown due to CTE mismatch between the constituents. In an exhaustive study,

Withers et al. [Ref. 13] used the Eshelby method to provide a rigorous theoretical basis

for the prediction of mechanical properties in discontinuous fiber composites. The

Eshelby model was modified to account somewhat for inclusion shape, geometry and

distribution and a full range of elastic, thermo-elastic and plastic composite properties

were investigated. The objective of the work was to provide a simple, reliable method,

based on the Eshelby theory, to analyze internal stresses in two-phase materials such as

metal matrix composites. The mean fiber and matrix stresses were determined as linear

functions of applied load and fiber/matrix misfit. The model was used to characterize

composite properties such as elastic modulus, CTE, matrix-to-fiber load transfer, ther-

mal residual stress levels and interfacial bond strength. Derby and Walker [Ref. 14
]



attempted to characterize the contribution of thermal strains to matrix strength using a

combination of electron microscopy and hardness tests.

The use of numerical solution techniques to determine the effect of residual stresses

on a microstress level have gained wide appeal among researchers. Dutta et al. [Ref.

15] used a combination of continuum methods with finite element analysis to model the

deformation zone arising from differential thermal contraction. Models were con-

structed for periodic arrays of spherical and cylindrical reinforcements. In a follow-on

study, Dutta [Ref. 16] used an axisymmetric finite element model to investigate the effect

of residual stresses in SiC/Al 6061 composites. The model assumed rigid and elastic fi-

bers with elastic-ideally-plastic matrices. The results indicated that residual stresses are

responsible for the less than expected matrix-to-fiber load transfer observed in discon-

tinuously reinforced metal-matrix composites. Povirk et al. [Ref. 17] conducted a

parametric study of the effects of fiber spacing, volume fraction and fiber aspect ratio

on the residual stresses in metal-matrix composites. The composite was modeled as a

periodic array of perfectly aligned cylindrical cells, each composed of a cylindrical fiber

surrounded by a matrix shell. The analysis accounted for thermo-elastic response in the

fiber and thermo-elastic-plastic response in the matrix. A Lagrangian-Jaumann stress

rate formulation was used to model the constitutive response of the material. A

quenching process was simulated by imposing a temperature history on the cell surface

through solution of the heat equation for a cylindrical bar. The results indicated that

transverse fiber spacing was the most important microstructural parameter affecting the

distribution of residual stress and magnitude of plastic deformation in the matrix. Fiber

aspect ratio was seen to have negligible effect on residual stresses since these stresses

became independent of axial position a short distance from the fiber corner. The overall

level of plastic deformation in the matrix was primarily dependent on the fiber volume

fraction.



B. STRESS-STRAIN BEHAVIOR OF METAL-MATRIX COMPOSITES

Several in-depth studies have recently been conducted to investigate the dependence

of composite stress-strain behavior on material properties and the size, shape and dis-

tribution of the reinforcing phase. These studies have relied almost exclusively on finite

element methods to determine the magnitudes of local field quantities and overall de-

formation behavior. The flexibility afforded bv this method enables a wide range of ef-

fects to be included in the numerical models that cannot otherwise be accounted for

effectively using traditional continuum mechanics theories. Factors such as non-

proportional loading and stress concentration zones due to the presence of sharp corners

in the reinforcement often render these methods intractable.

Christman et al. [Ref. 18J conducted an experimental and numerical study of defor-

mation in metal-ceramic composites with the objective of investigating the dependence

of tensile properties on reinforcement shape, aspect ratio and distribution. The numer-

ical analysis was conducted using a Lagrangian kinematic formulation with Jaumann

stress rate and strain rate tensors used in the constitutive response. The matrix material

was modeled as an elastic viscoplastic solid subject to isotropic work hardening. For the

fibers, elastic and perfectly rigid models were used in the analysis. The material model

for the composite consisted of a regular, periodic array of perfectly aligned fibers within

cylindrical unit cells. The numerical study was carried out within the context of an

axisymmetric analysis to account for fiber aspect ratio, fiber spacing, and volume frac-

tion effects; a two dimensional plane strain analysis was used to account for variations

in fiber distribution. Two different sets of boundary conditions were applied to the

model to simulate geometric constraint effects. The numerical results indicated that

significant hydrostatic stress states (up to 6 times the composite offset yield strength)

were developed in the matrix during deformation. Plastic deformation occurred first at

the fiber tip then spread rapidly throughout the matrix, with the magnitude of the ef-



fective plastic strain greatly exceeding the far-field axial strain. The results of the

parametric study were in qualitative agreement with experimental results. Fiber volume

fraction was the single greatest factor affecting composite strength. The effects of fiber

aspect ratio and spacing were strongly influenced by the geometric constraint imposed

on the model and the subsequent hydrostatic stress states developed. To compare the

numerical models with experimental tensile data, average values for fiber and cell aspect

ratio were chosen from optical microscopy results. The model with imposed sidewall

constraint predicted values of elastic modulus, yield strength and tensile strength far in

excess of the experimental data. The model without imposed sidewall constraint over-

predicted the values of elastic modulus and yield strength, but greatly underprcdicted the

tensile strength and work-hardening rate of the actual composite.

In two companion studies, Tvergaard [Refs. 19, 20 ] applied the finite element

scheme used by Christman et al. [Ref. 18] to investigate the parametric effects of volume

fraction, fiber spacing and fiber aspect ratio using a unit cell model in which the fibers

were shifted relative to one another. The purpose of this modeling constraint was to

account for matrix shearing between adjacent fiber ends. The author postulated that

this shearing was a main deformation mechanism in the actual composite. Additionally,

fiber debonding was accounted for using a cohesive zone model that described normal

and tangential separation as well as fiber pull-out. The qualitative results for the volume

fraction, fiber aspect ratio and fiber spacing effects were identical to the previous study,

however the effect of matrix shearing due to the shifted fiber arrangement lowered the

magnitudes of the strength predictions into much closer agreement with experimental

results. The results also indicated that the assumption of rigid fibers was a good ap-

proximation for modeling discontinuous fiber composites. The results for the fiber de-

bonding model revealed that interfacial separation occurred first at the fiber corner

followed by separation along the top and sidewall fiber surfaces, respectively. The au-



thor predicted that thermal residual stresses would tend to delay the onset of dcbonding

as well as increase Coulombic friction effects once fiber pull-out occurred.

Using three-dimensional finite element models, Levy and Papazian [Ref. 21] investi-

gated the tensile properties of aluminum matrix composites containing whisker and

particulate silicon carbide. The SiC fibers were modeled as longitudinally aligned cylin-

ders in a three-dimensional array. The fibers were assumed transversely aligned in one

model and staggered in the other. The matrix material was modeled as elastic-plastic

and the SiC as elastic. The variables selected for study were fiber volume fraction, fiber

aspect ratio, fiber spacing and orientation of the fiber to the applied load. The analytical

results accurately predicted the increase in strain hardening rate and elastic modulus with

increasing volume fraction and fiber aspect ratio. The models also predicted the exper-

imentally observed initial decrease and subsequent increase in proportional limit with

increasing volume fraction. The results of orienting the fiber orthogonal to the applied

load indicated little dependence on fiber aspect ratio. The microstress data were used

to predict the location and growth of the plastic zone during deformation. The use of

three-dimensional analysis allowed the authors to account for the presence of adjacent

fibers more accurately than in the typical axisymmetric model. The initial yielding lo-

cation in longitudinal loading was sensitive to fiber aspect ratio and fiber spacing. For

fiber aspect ratios of one, initial yielding in the matrix occurred at the midpoint between

adjacent fiber end surfaces. For aspect ratios of four and larger, initial yielding occurred

along the fiber end surface. In transverse loading, initial yielding always occurred be-

tween adjacent fibers next to the lateral (cylindrical) fiber surfaces.

Brockenbrough and Suresh [Ref. 22] used three-dimensional cylindrical and plane

strain models to investigate the sensitivity of plastic deformation behavior of continuous

fiber composites to variations in fiber cross-section and distribution. The composite was

modeled as a periodic array of three-dimensional unit cells with the fibers arranged in



"square" edge-packing and "hexagonal" edge-packing configurations. Fiber distribution

effects were studied using a plane strain model of 26 cylinders of aspect ratio 1. The

analytical results indicated that the plastic deformation characteristics of the composite

in transverse loading were influenced both by the fiber cross-sectional geometry and

distribution. However, fiber distribution had a more pronounced elTect on transverse

tensile properties. In longitudinal loading, the evolution of matrix triaxiality and

plasticity overshadowed both fiber geometry and distribution elfects.

C. RESEARCH OBJECTIVES AND OVERVIEW

While the previously discussed research efforts have shed light on the extent and

effect of thermal residual stresses on some strengthening mechanisms in metal matrix

composites, as well as the sensitivity of composite tensile properties on processing vari-

ables, a comprehensive study into the effect of these stresses on the overall stress-strain

response is not available in the current literature. Accordingly, the purpose of this re-

search is twofold. The first objective is to investigate the effect of the thermal residual

stresses generated in the matrix during cooldown from the fabrication/solutionizing

temperature on the uniaxial stress-strain response of the composite. Since these residual

stresses are expected to be strongly dependent upon fiber volume fraction, fiber aspect

ratio and fiber spacing, the second objective is to conduct a parametric study of the ef-

fect of the above factors on composite tensile behavior. The parametric effects of fiber

volume fraction, fiber aspect ratio and fiber spacing will be considered within the context

of two-dimensional, axisymmetric finite element analysis and compared for the cases of

materials with and without residual stresses, respectively. The model system chosen for

study is a discontinuous SiC fiber reinforced Al 6061-T6 matrix composite.

Chapter II of this thesis details the assumptions and methods used in the numerical

modeling of the composite as well as the material testing procedures. Chapter III con-

S



tains the results of the investigation and compares the findings with current literature.

Chapter IV summarizes the relevant conclusions of the study.



II. EXPERIMENTAL APPROACH

A. NUMERICAL MODELING

In order to accurately describe the behavior of a composite material numerically, the

model must contain an appropriate level of realism in the choice of geometric and ma-

terial variables. Figure 1 is an optical micrograph of a 30 vol.% SiQ/Al 6061 compos-

ite. The photograph reveals several characteristics of the actual composite that need to

be considered in attempting to model the material numerically. First, there is a consid-

erable degree of randomness in fiber alignment, with some fibers actually oriented

orthogonal to the tensile axis. Takao et al. [Ref. 23] investigated the effects of fiber

misorientation on the effective elastic modulus of short fiber composites. Using a

continuum approach based on the Eshelby method, the authors found that fiber align-

ment had a greater impact on composite elastic modulus than fiber volume fraction. A

second modeling consideration is the non-uniformity in fiber distribution throughout the

material. This leads to regions in the matrix in which the fibers are clustered together

resulting in a local volume fraction in excess of the bulk volume fraction of the material.

Similarly, there are low-fiber concentration regions in which the local mechanical prop-

erties of the composite are approximately those of the unreinforced matrix. Previous

investigations [Refs. 18,22] have described the effect of fiber clustering within the context

of plane strain finite element models. Their results indicated that clustering greatly re-

duced the resistance to plastic flow in the composite by decreasing the magnitude of

matrix triaxiality; however, the elastic properties of the composite were not significantly

affected by variations in fiber distribution. A third modeling consideration is the wide

range of fiber aspect ratios encountered in the material. A majority of previous studies

have attempted to account for this effect by using an average fiber aspect ratio in the

10
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numerical calculations. An investigation by Takao and Taya [Ref. 24] revealed that

volume averaging resulted in larger values of aspect ratio than a simple frequency-

averaging approach. Experimental data was compared with analytical results based on

the Eshelby method. For short fiber composites, it was determined that the use of a

volume-averaged fiber aspect ratio gave predictions of elastic modulus within 7% and

CTE within 10% of experimental values. Additionally, the authors indicated that the

wider the range of aspect ratio distribution in the material, the greater the error in the

use of an average aspect ratio in analytical results.

1. Finite Element Modeling

In using the finite-element method to predict macro-mechanical composite be-

havior, an assumption implicit in the modeling is that the behavior of a microscopic

portion of the material can adequately represent the behavior of the bulk material. To

this end, a multipurpose finite-element code, ADINA, was used to predict macrscopic

mechanical behavior in the form of uniaxial stress-strain curves, and microscopic be-

havior in the form of von Mises effective stress contours plots. ADINA permitted great

flexibility in modeling through the use of geometric and materially non-linear solution

capabilities. Two-dimensional axisymmetric analysis was used in conjunction with an

Updated-Lagrangian-Jaumann (ULJ) kinematic formulation. This numerical scheme

uses the principle of virtual work to calculate incremental displacements, which through

appropriate constitutive relations yield elemental stresses. The non-linear response of

the material is approximated through an incremental approach that predicts the config-

uration of the body at t + At with the present configuration at t. In this case, t denotes

an iterative counter and not time. This scheme, based on the Newton-Raphson

equations [Ref. 25], applies incremental displacements to the body until the applied ex-

ternal load is balanced by the sum of the internal nodal forces. The numerical models

were constructed using two-dimensional isoparametric elements. Second-order Gaussian

12



integration was used to provide suitable numerical accuracy in the solution. The alu-

minum matrix was characterized by a bilinear stress-strain curve, the slopes of which

represent the elastic modulus, E, and strain-hardening modulus, £„ respectively. The

aluminum matrix was assumed to undergo isotropic work hardening and obey the von

Mises yield criterion. All material properties were assumed to be constant within the

temperature range considered in the study. This is a highly idealized assumption in the

case of aluminum; however, for the purposes of this study, room temperature properties

were used in view of the modeling of the quench process as an instantaneous event. For

aluminum 6061 in the T6 condition, the relevant thermo-mechanical properties are E

= 68.3 GPa, E
t

= 656 MPa, a
y
= 276 MPa, v = 0.33 and CTE = 23.0 (xK~u, the SiC

fiber values are E = 450 GPa, v = 0.2 and CTE = 4.3 fxK~ l
.

In the present work, two unit cell configurations similar in nature to models of

previous researchers [Refs. 18, 19 ] are considered to account for the cases of aligned fi-

ber (Figure 2a) and staggered fiber (Figure 2b) arrangements, respectively. In each case,

the material is assumed to be composed of a periodic array of cylindrical unit cells per-

fectly aligned with the tensile axis. As shown in Figure 2c, each cell is composed of a

cylindrical fiber of radius R
f
and length L

f
surrounded by a matrix shell of radius R

c
and

length L
c

. In order to simplify computational effort, the three-dimensional problem was

reduced to two-dimensions by using an axisymmetric modeling approach. The

axisymmetric approximation assumes that a structure with rotational symmetry about

an axis in the presence of a rotationally symmetric load can be fully described using a

two-dimensional model with a unit radian width [Ref. 26]. From Figure 2c, it can be

seen that the axisymmetric model is an appropriate analog to a three-dimensional array

of hexagonal unit cells [Ref. 19].

13
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2. Boundary Conditions

In ADIXA, displacement-based boundary conditions are specified in addition

to a master set of translational and rotational degrees of freedom for the entire finite-

element model. In axisymmetric analysis, ADINA requires the model to be contained

in the positive quadrant of the y-z plane. The master degrees of freedom in this case

allow y and z translation only. Subsequent specifications on displacement boundary

conditions can modify, but not delete the master degrees of freedom.

A cylindrical coordinate system was used with displacements u
z
and ur corre-

sponding to the z and r axes, respectively. For the aligned fiber model, two sets of

boundary conditions were employed to simulate the effect of neighboring unit cells

through the use of geometric constraints. One model was used to simulate a material

allowed to undergo unconstrained plastic flow. The only boundary conditions required

for this case are u
2
= along z = and ur

= along r = 0. These conditions describe

a cell in which deformation response is unaffected by the presence of neighboring cells.

While such a condition is physically impossible, its value as a numerical model is in

serving as a comparison to assess the role of varying degrees of geometric constraint on

composite constitutive response.

For the aligned fiber model "constrained" by adjacent unit cells, the boundary

conditions, in addition to those for the "unconstrained" case, require that the displace-

ments u2 on z = Lc and u
r
on r = Re be constrained to preserve the right circular cylin-

drical shape of the unit cell throughout the deformation history of the material. In this

case, the cell "senses" the presence of neighboring cells by application of additional

constraints at the top and lateral surfaces of the cell such that they remain planar

throughout the quench and tensile loading process.

The staggered fiber model (Figure 2b) depicts the composite as a periodic array

of fibers perfectly aligned with the tensile axis, yet shifted relative to one another along

15



the z-direction. This model is complicated by the necessity of including the combined

effects of two adjacent unit cells in the boundary conditions. Due to the unique ar-

rangement of the cells, the top surface of one cell is constrained to move not only in a

plane, but also only as much as the bottom surface of the adjacent cell. Since this bot-

tom surface contains the fiber, this portion of the cell will contract far less during the

quench. The requirement for top and bottom surface displacements to be equal and

opposite imposes greater constraint on the cell than in the aligned "with constraint" case.

Along the cell centerline, symmetry conditions require that u
r
= along r = 0. On the

lateral surface of the cell at r = R
e , compatibility requirements in the axial direction re-

quire that the u
z
displacements above and below point C be equal and opposite since this

point is the geometric center of the two cell system. In the radial direction, the situation

is complicated by the necessity to constrain the movement of the nodes above and below

point C as a function of the radial displacement of point C (ue ) to ensure that the total

cross-sectional area of the two cell system remain independent of the axial coordinate.

Tvergaard [Ref. 19J applied this boundary condition by requiring

{u
r{n ) + Rf + {u

r
(S) + Rf = 2{u

c + Rf (1)

where the coordinates r\ and <5 correspond to the local coordinate systems of the top and

bottom cell surfaces, respectively. The displacement-based boundary modeling capabil-

ities of ADINA preclude meeting this requirement explicitly, hence radial compatibility

is relaxed somewhat in the staggered model.

The staggered model boundary conditions are an important counterpart to the

aligned models in that the effects of matrix shearing due to overlapping fibers on the

plastic deformation behavior of the composite can be studied. Due to the non-

uniformity of fiber distribution in the material, actual composite response will be a

combination of both aligned and staggered fiber configurations.

16



Perfect bonding is assumed along the fiber-matrix interface. This is accom-

plished in ADINA by specifying that the fiber and matrix elements adjacent to the

interface share the boundary nodes, thereby precluding the possibility of separation

during the loading sequence.

3. Applied Loading

The loading scheme used in the numerical modeling combines thermal and dis-

placement loads in a sequence designed to approximate those experienced by the com-

posite during fabrication and subsequent tensile testing.

The cooldown from the fabrication/ solutionizing temperature to room temper-

ature is accomplished by subjecting all nodes in the unit cell to a 505 °C temperature

drop in one solution time step. In ADINA this is accomplished by selecting the incre-

mental time step size to be equal to the solution time period, thereby bringing the nodal

temperatures from the solutionizing temperature (530 °C) to room temperature (25 °C)

in one step. The rationale for adopting this approach was to: (1) eliminate the effect of

quench rate from the solution and (2) eliminate size and bulk thermal property effects

necessary when attempting to impose a thermal history at the surfaces of the unit cell.

While this analysis does not take into account factors such as thermal softening due to

heat generation during plastic deformation, it was assumed that the dominant effect on

the composite from the fabrication cycle is the generation of an enhanced dislocation

density in the vicinity of the fiber-matrix interface that is primarily a factor of CTE

mismatch. The resulting nodal displacements from the quench were stored in a restart

file to be used as initial nodal displacements during tensile loading analysis. The use of

restart analysis allows great flexibility in modeling by permitting the use of a variety of

loading conditions in a sequence, thereby providing a more realistic simulation of real

processes.
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Tensile loading of the model was accomplished by applying an axial displace-

ment of

ALc
= (e

E -l)L
c (2)

where e is the applied true strain. For the aligned model, ALC
was applied to the top

surface of the unit cell; in the staggered case, a displacement of
"
e

was applied to the

top and bottom surfaces, respectively. The composite stress-strain curves were con-

structed by applying a ALC corresponding to a selected value of e. The average axial

stress was calculated using a volume-average approach as follows:

1

r
c

J2ZdVf + -1 °?:drm (3)

where superscripts c, f and m correspond to composite, fiber and matrix values, respec-

tively. In this equation, each o
2Z
represents an average of the four stress values obtained

from the Gaussian integration points within each finite-element. The average elemental

stresses are then multiplied by their corresponding elemental volumes and summed over

the entire volume of the composite.

4. Grid Independence

In order to obtain accurate solutions from a numerical model, convergence cri-

teria for the linearization process and the mesh geometry must be established. In

ADINA, the user has the option of selecting the iterative scheme for linearization, the

basis for convergence (displacement, energy, etc.) and the value for the convergence

criterion. For the Full-Newton iterative scheme selected for use in this study, out-of-

balance energy was the basis for convergence and the required tolerance was set to

10-6 . The mesh for each model was uniformly refined until 2 successive values of ac

2Z
at
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e = (the residual axial stress) gave results that agreed to within 10%. The residual axial

stress value was found to be the factor most sensitive to changes in mesh size and,

therefore, was determined to be the most suitable parameter to establish grid independ-

ence. In most cases, the numerical models achieved grid independence with approxi-

mately 250 elements.

5. Model Implementation

The numerical models discussed above were modified for the particular variable

whose effect was being evaluated. The models used to approximate the 30 vol.% ex-

perimental data were assigned values of fiber and cell aspect ratios of 5 and 6, respec-

tively while the 20 vol.% models used values of 3 for both fiber and cell aspect ratios.

For volume fraction effects, the fiber and cell aspect ratios were both fixed at 3 and nu-

merical results were carried out for volume fractions of 10%, 20% and 30%. For the

fiber aspect ratio study, the fiber volume fraction was fixed at 30%; the fiber and cell

aspect ratios were set equal to one another to eliminate spacing effects and numerical

results carried out for values of 1, 3, 6 and 10. For the fiber spacing study, the fiber

volume fraction was again fixed at 30%; the cell aspect ratio was fixed at 6 and numer-

ical results were carried out for fiber aspect ratios of 3, 6 and 10.

Contours of von Mises effective stress were generated to determine the location

of initial yielding in the matrix and the subsequent growth of the plastic zone due to

loading. These models were developed using approximately twice the number of ele-

ments used in the constitutive response models to ensure clarity and resolution of the

contour curves.

B. MATERIAL TESTING

The material testing portion of this study primarily focused on the tensile testing of

both unreinforced and fiber-reinforced Al 6061 to extract mechanical properties for use

in the numerical models , and in the case of the fiber-reinforced aluminum, to serve as
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a comparison to assess the accuracy of the numerical predictions of stress-strain re-

sponse. The composite material was procured from Advanced Composite Materials

Corporation (ACMC), Greer, SC, and was produced using powder metallurgy (P/M)

techniques. Extruded billets were subsequently produced from the P/M compacts for

20 vol.% SiC/Al 6061 at a reduction ratio of 11:1 and 30 vol.% SiC/Al 6061 at a re-

duction ratio of 6.5:1. The composite matrix was heat treated to the T6 condition by the

manufacturer. Tensile test specimens with 1.0" gage lengths were cut from the extruded

stock such that the longitudinal axis of the sample was aligned with the extrusion di-

rection. L'nreinforced Al 6061-T6 tensile specimens were machined from plate stock.

The tensile specimens were mounted in a screw-driven Instron machine and pulled

at rates of 1.0 mm/min for the aluminum samples and 0.127 mm/min for the composite

samples. Clip-on extensometers were used to record engineering strain values during the

test. The curves for the Al 6061 samples were used to determine values of yield strength

and strain-hardening modulus for input into the numerical models. The value of the

strain-hardening modulus was determined by fitting a curve from the offset yield point

to the stress-strain curve within the expected strain range of the composite, in this case

5%. A more accurate value would be obtained by using an unreinforced powder sample

from the same lot that the composite was produced, followed by heat treatment together

with the composite samples to ensure uniformity in material processing.

An optical micrograph was obtained from a sample of the 30 vol.% extruded stock

to determine average values of fiber aspect ratio and cell aspect ratio as well as to serve

as a microstructural comparison when developing the unit cell models.
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III. RESULTS AND DISCUSSION

A. COMPARISON OF ALIGNED AND STAGGERED FIBER MODELS

The sensitivity of composite constitutive response to imposed modeling constraint

can be seen in Figure 3. As shown in Figure 3a, the unconstrained aligned-Fiber model

for a composite with 30 vol.% SiC whiskers of aspect ratio 5 predicts a Young's modulus

(E) of 148 GPa, a proportional limit (PL) of 181 MPa and a yield strength (YS) of 276

MPa. The aligned-fiber model with constraint, in comparison, predicts the composite

E, PL and YS values as 163 GPa, 292 MPa and 429 MPa, respectively. The constrained

model also predicts a substantially higher work-hardening rate than the unconstrained

model. Figure 3a also shows the experimental data for a 30 vol.% metal-matrix com-

posite (MMC). By comparing analytical results with experimental data, it is evident that

both the constrained and unconstrained models overestimate composite stillness slightly.

This can be attributed to the fact that the models assume perfectly aligned, parallel fi-

bers. From Figure 1, the fibers in the experimental material are clearly neither aligned

nor parallel. Additionally, some deviation is expected due to the mismatch between the

fiber aspect ratio and fiber spacing assumed in the model and that occurring in the actual

composite. The unconstrained model was found to underestimate the composite yield

strength and work-hardening rate considerably. This is expected since the matrix in the

unconstrained model is unable to "sense" the presence of adjacent unit cells and, there-

fore, is allowed to undergo relatively unconstrained plastic flow. The constrained model,

on the other hand, is a much more realistic representation of an actual composite, al-

though it predicts an appreciably higher yield strength and work-hardening rate. This,

as discussed earlier, is attributable to the considerable deviation of the actual MMC

from the idealized fiber configuration assumed in the model.
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Constraint Effects
For 30 vol.% Af=5 Ac=6
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(a)

Constraint Effects
For 20 vol.% Af=3 Ac=3
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Figure 3. Modeling Constraint Effects: Comparison of aligned and staggered

models with a (a) 30 vol.% tensile specimen and (b) 20 vol.% tensile

specimen, respectively.
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As seen in Figure 3a, the staggered model provides a closer approximation of the

experimental data, despite the partially relaxed radial compatibility conditions (section

1 1.A. 2). The model predicts stiffness, proportional limit and work-hardening rate values

which are reasonably close to the actual composite, but overestimates the yield strength.

The above discussion suggests that the degree of liber alignment along the loading

axis and the extent to which the adjacent fibers are shifted with respect to each other

has as large effect on the accuracy of the analytical predictions. The degree of fiber

alignment increases with increasing extrusion ratio, and hence it is expected that the

agreement between analytical results and experimental data will improve with larger

extrusion ratios. In the limiting case where the extrusion ratio is very high and all the

fibers are perfectly aligned along the loading axis, the predictions of the aligned model

are expected to match the experimental data reasonably well, although some over-

prediction is likely since some degree of lateral misalignment is probable. In that case,

the staggered fiber model is probably a more reasonable approximation, provided the

radial boundary conditions of the model are adjusted appropriately. With the present

radial boundary conditions, however, the staggered model is expected to somewhat

underestimate the mechanical properties (PL,YS) of a composite with a very large

extrusion ratio (i.e. a high degree of fiber axial alignment).

Figure 3b illustrates the effect of the imposed modeling constraints compared with

20 vol.% experimental data. Both aligned and staggered models give reasonable pred-

ictions of stiffness, with experimental values of proportional limit, yield strength and

work-hardening rate lying between the values predicted by the numerical models. As

expected, because of the higher extrusion ratio of the 20 vol.% sample (11:1, compared

to 6.5:1 for the 30 vol.% sample), the predictions of the constrained aligned-fiber model

are in closer agreement with the experimental data than at 30 vol.%. The staggered

model now underpredicts the composite response somewhat due to the relaxed radial
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compatibility condition. From the above, it is reasonable to assume that the aligned-

fiber model is a fair approximation of a real composite provided the extrusion ratio is

very large. The staggered model with the present boundary conditions, however, while

yielding reasonable predictions for composites with low to medium extrusion ratios, is

not a correct representation of the constraint mechanisms operative in an actual MMC.

Hence, the aligned-fiber model was the model of choice for the parametric study pre-

sented in subsequent sections.

The close agreement between analytical results and experimental data at low fiber

volume fractions is well represented in the literature [Refs. 18,19]. The majority of pre-

vious studies have made numerical comparisons with control systems of volume frac-

tions from 5% to 20%. The greater level of error at higher volume fractions can be

attributed to the modeling process; at high volume fractions, the reduced lateral and

longitudinal spacing between the fiber and cell result in increased levels of matrix con-

straint, and hence have a significant effect on the plastic flow behavior of the material.

Hence a slight error in the estimation of fiber aspect ratio and fiber spacing translates

into a large error in the prediction of composite response. For low volume fraction

models, the boundaries of the unit cell are relatively free of these constraint effects and

the numerical results more closely represent experimental results.

Another factor affecting the trend of the numerical results is the difference in mean

fiber aspect ratio between the 20 and 30 vol.% samples. The 20 vol.% sample was

processed at a reduction ratio of 11:1, whereas the 30 vol.% sample was processed at a

ratio of 6.5:1. The end result of this difference is that the 20 vol.% sample experiences

more fiber breakage during processing and subsequently exhibits a lower value of aver-

age fiber aspect ratio (Af= 3) than the 30 V% sample (A
f
= 5). Christman et al. [Ref.

18] observed that the use of particulate-reinforced models (Af- 1) produced better

agreement with experimental data than using whisker-reinforced systems. The reasons
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for increased accuracy of the numerical models were (1) particulate misalignment with

the tensile axis had a negligible effect on composite response for Af= 1, (2) the

particulate morphology produced less plastic flow constraint in the composite with the

result that the idealized cell model more closely emulated the behavior of the actual

material and (3) clustering effects in particulate-rcinforced composites had less of an ef-

fect on the stress-strain response than in whisker-reinforced materials.

B. EFFECT OF FIBER VOLUME FRACTION

Figure 4 illustrates the effect of increasing volume fraction on the constitutive re-

sponse of the composite. The numerical models predict the experimentally observed

trends of increasing values of stiffness, yield strength and work-hardening rate with in-

creasing volume fraction. The primary mechanisms affecting composite behavior in this

case are increased plastic flow constraint, increased dislocation density and enhanced

matrix-to-fiber load transfer with increasing reinforcement volume fraction. Christman

et al. [Ref. 18] observed that as volume fraction increased, the magnitude of the

hydrostatic stresses in the matrix dramatically increased producing greater resistance to

plastic flow, and hence higher work-hardening rates. Another trend predicted by the

models is the experimentally observed behavior of decreasing and subsequent increasing

values of proportional limit with increasing volume fraction. Levy and Papazian [Ref.

21] reported this effect as a function of localized stress concentrations in the matrix at

low levels of reinforcement addition.

C. EFFECT OF FIBER ASPECT RATIO

The dependence of composite constitutive response on fiber aspect ratio can be seen

in Figure 5. The numerical results predict an increase in stiffness, proportional limit,

yield strength and work-hardening rate with increasing aspect ratio. Additionally, the

curves indicate that the strengthening effect becomes less pronounced as the fiber aspect

ratio increases. The increased strength of composites with larger aspect ratios can be
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Volume Fraction Effects
For Af»3 Ac=3
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Figure 4. Volume Fraction Effects: (a) Curves of predicted composite response

for reinforcement volume fractions of 0%, 10%, 20% and 30%, respec-

tively and (b) schematic of model configurations.
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Fiber Aspect Ratio Effects
For 30 vol.% Af=Ac
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Figure 5. Fiber Aspect Ratio Effects: Curves of composite response for fiber as-
pect ratios of 1,3,6 and 10, respectively.
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Figure 6. Effect of the Critical Fiber Aspect Ratio: Schematic representation of
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Fiber Load-Bearing Effects
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Figure 7. Fiber Load-Bearing Behavior: OfTccts of fiber aspect ratio and volume
fraction on the load-bearing ability of the fiber in the presence of resi-

dual stresses.
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attributed to increased load transfer between the matrix and the longer fibers. Piggott

[Ref. 27] described this strengthening effect in terms of a critical aspect ratio {A cnt ), below

which the load transfer between the matrix and fiber fail to produce the maximum fiber

axial stress possible. Figure 6 illustrates this effect. For fiber aspect ratios above the

critical value, surface shear transfer from the matrix can result in maximum load transfer

to the fiber. For aspect ratios equal to the critical value, portions of the fiber can still

experience maximum load transfer, although the average stress in the fiber is lower.

When the aspect ratio is reduced to below the critical value, the load transfer is such that

the resulting values of axial stress and average stress in the fiber are far below the pre-

vious cases. In this case, the relative inability of the matrix to transfer load to the fiber

results in the matrix bearing a substantially greater portion of the applied load, leading

to lower values of composite stiffness, yield strength and work-hardening rate. It is

generally believed that matrix-to-fiber load transfer is not a major strengthening mech-

anism in discontinuously-reinforced MMC's [Refs. 28 ,29], which are thought to be

strengthened primarily by increased matrix dislocation density. However, as shown in

Figure 7, the average axial stress supported by the fiber increases with both increasing

fiber volume fraction and fiber aspect ratio. It is evident that load transfer from the

matrix to the fiber is an important factor in the strengthening of fiber-reinforced

MMC's. This is further supported by the increase in Young's modulus observed both

analytically and experimentally with increasing fiber volume fraction. If an increased

dislocation density were the only strengthening mechanism, no increase in stiffness

would be observed on increasing the reinforcement content of the composite.

The reduced degree of additional strengthening with increasing aspect ratio at higher

values of fiber aspect ratio is observed only for aligned fibers. The trends observed in

other studies [Refs. 19,21] using the staggered-fiber arrangement indicate that the level

of strengthening in the composite increases with increasing aspect ratio. This is contrary
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to the trend observed in the aligned-fiber model. One explanation of the difference in

behavior is due to the effect of fiber overlap in the staggered model. As liber aspect ratio

increases, the degree of fiber overlap increases producing greater geometric constraint

and therefore increased resistance to plastic (low.

D. EFFECT OF FIBER SPACING

The sensitivity of composite constitutive response to variations in fiber spacing is

shown in Figure 8a. The results indicate that changes in fiber spacing have little effect

on composite elastic properties; however, the resistance to plastic flow in the material is

significantly affected by close end-to-end and side-to-side fiber spacing. The curve re-

presenting close end-to-end spacing (A
c
=

2>) exhibits the greatest increase in work-

hardening rate due to the relatively small amount of matrix material separating adjacent

fiber ends. This results in a substantial increase in load transfer across the fiber end

surface, and hence increased resistance to plastic flow. The curve representing close

side-to-side fiber spacing (Ac
= 10) exhibits a somewhat lower work-hardening rate than

observed in the close end-to-end spacing case. The lateral constraint imposed on the

composite in this case, while not as great an effect as for A e =3, still increases the re-

sistance to plastic flow in the material above that of the composite model without

spacing constraints (A
c
=6).

E. EFFECT OF THERMAL RESIDUAL STRESSES

The primary aim of this study has been to assess the role of thermal residual stresses

on the stress-strain behavior of metal-matrix composites. The results contained in this

section describe this effect in terms of fiber volume fraction and geometric constraint due

to the modeling of fiber arrangement. In addition, load-bearing characteristics of the

fiber during deformation is studied in an effort to more fully explain the stress-strain

behavior of the numerical models.
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Fiber Spacing Effects
For 30 vol.% Af=5
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Figure 8. Fiber Spacing Effects: (a) Numerical results for fixed volume fraction

and fiber aspect ratio with variable fiber spacing and (b) schematic of

fiber spacing models.
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Residual Stress Effects
For Af=3 Ac = 3
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Figure 9. Residual Stress and Volume Fraction Effects: Effects of residual stress

as a [unction of (a) volume fraction. Also shown are the stresses sup-

ported by the fiber as a function of strain for (b) 10 vol.% and (c) 30

vol.%.
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dual stress predicts a higher composite stiffness and yield strength, while the model with

residual stress exhibits a higher work-hardening rate. The results for 30 vol.% indicate

that both curves exhibit similar behavior in the elastic regime, however the curve with

residual stress displays a slightly higher work-hardening rate. To explain these results,

plots of fiber stress-versus-strain were compared with the corresponding composite

curves. The results indicate that for 10 vol.% the presence of residual stresses inhibits

the load transfer to the fiber resulting in an overall decrease in composite strength in

both the elastic and plastic regimes. The results for 30 vol.% indicate the opposite trend.

The presence of residual stresses enhances the transfer of load to the fiber enabling the

composite as a whole to exhibit greater strength properties. From Figure 9, it is also

evident that the rate of load transfer to the fiber with increasing strain is much higher

in the 30 vol.% composite. While for the 10 vol.% composite, the rate of load transfer

with and without residual stresses is fairly close, the 30 vol.% exhibits a much higher rate

initially in the presence of residual stresses, leading to the observed cross-over of the fi-

ber stress-strain curves. This effect indicates that for the 30 vol.% composite, the pres-

ence of residual stresses produces a much higher rate of load transfer from the matrix

to the fiber resulting in the observed increase in composite mechanical properties.

Figure 10 illustrates the role of thermal residual stresses as a function of imposed

geometric constraint. In this case, the aligned and staggered models are compared at a

volume fraction of 30% and equal cell and fiber aspect ratios of 3. The results indicate

that the aligned model with residual stress predicts greater strengthening effects in both

the elastic and plastic regimes, whereas the staggered model exhibits lower stiffness and

yield strength and a higher work-hardening rate in the presence of residual stresses. The

fiber stress-strain results for the staggered model indicate that the transfer of load from

the matrix to the fiber is inhibited in the presence of residual stresses, similar to the re-

sults for the aligned model at 10 vol.% (Figure 9b).
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Residual Stress Effects
For 30 vol.% Af=3 Ac=3
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Figure 10. Residual Stress and Modeling Constraint Effects: Effects of residual
stress as a function of (a) geometric constraint. Curves of fiber stress-

strain response for a (b) 30 vol.% aligned and (c) 30 vol.% staggered
model.

35



F. PLASTIC ZONE INITIATION AND GROWTH

In the previous section, the role of thermal residual stresses as functions of volume

fraction and modeling constraint were discussed in terms of their elTect on the overall

stress-strain response of the composite. In this section, the role of residual stresses on

the initiation and growth of the plastic zone during thermal and subsequent tensile

loading of the composite is studied with reference to the effect of reinforcement volume

fraction, modeling constraint and fiber spacing on the effective stress state in the com-

posite in an effort to identify the main deformation characteristics operative in an actual

composite.

1. Thermal Residual Stress Effects

Figure 11 shows a 30 vol.% aligned model at selected stages of deformation.

The contours of residual effective stress (£ = 0) reveal that a plastically deformed zone

{a
eff
> 275 MPa) exists along the entire fiber-matrix interface with the highest stress

states occurring along the fiber corner. The plot also indicates that the entire area of the

matrix from the lateral interface to the cell boundary has undergone plastic deformation.

The stress levels in the fiber indicate a compressive stress zone in excess of 500 MPa

concentrated along the fiber corner and extending along the end surface. This high

stress zone quickly dissipates to below 250 MPa a short distance from the end surface

of the fiber. At £ = 0.001, the plastic zone along the lateral surface of the interface begins

to expand in the radial direction. The matrix region adjacent to the end of the fiber ex-

periences a stress relaxation as load is transferred from the matrix to the fiber across the

fiber tip and end surface. This effect can be seen in the growth of the region of the fiber

tip stresses above 500 MPa,indicative of the fiber bearing a greater portion of the applied

loading at £ = 0.001. At £ = 0.0045, the entire fiber is stressed above 500 MPa and the

plastic zone has further developed in the area between the lateral interface and cell
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Figure 11. Plastic Zone Development-Residual Stress Effects: Contours of effec-

tive stress for a 30 vol.% aligned model with A, — Ae
= 6.
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boundary and has begun to expand to the matrix region above the fiber as evidenced

bv the 275 MPa contour lines.

The contours for the 30 vol.% model without residual stresses illustrates the

fundamental difference in behavior of the composite with and without residual stresses.

In the model without residual stress, plastic deformation begins in the matrix region

above the fiber and at the fiber corner. At increased load levels, the plastic zone expands

in the axial direction into the matrix material above the fiber, followed by radial growth

along the lateral fiber interface out to the cell boundary. Thus, when residual stresses

are absent, the matrix region next to the lateral (cylindrical) fiber surface is the last to

deform plastically, suggesting that the matrix in this region is able to transfer a large

portion of the applied load to the fiber. Little, if any, load transfer occurs across the

fiber ends in this case. When thermal residual stresses are present, on the other hand,

the fibers are in axial compression prior to loading, and a large degree of load transfer

takes place across the fiber ends, as evidenced by the initial stress relaxation in the ma-

trix and the subsequent development of a small plastic zone upon external loading. The

increased load transfer across the fiber end surface, however, is at the expense of some-

what reduced load transfer across the lateral portion of the fiber-matrix interface, as

evidenced by the increase in the effective stress in the plastic zone adjacent to the inter-

face from the outset.

2. Volume Fraction Effects

Figure 12 shows contours of effective stress for a 10 vol.% aligned model. The

results clearly illustrate the effect of varying reinforcement volume fraction on the de-

formation characteristics of the composite. The absence of fiber spacing constraints in

the 10 vol.% numerical model results in a residual stress field in the matrix characterized

by larger levels of plastic deformation in the vicinity of the fiber-matrix interface than

for the 30 vol.% model. The fiber exhibits an extremely high compressive residual stress
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characterized by a 500 MPa zone in the vicinity of the fiber corner, a low stress region

in the material below the end surface and an adjacent high stress region (above 500

MPa) extending to the midpoint of the fiber. This is contrasted with the 30 vol.% model

in which the region below the top surface of the fiber is relatively unstressed (below 250

MPa). Physically, the 10 vol.% model has a larger volume of matrix material sur-

rounding the fiber which, upon quenching, encounters less restriction in movement than

in the 30 vol.% model. The matrix, therefore, is free to deform plastically to a greater

extent in the vicinity of the interface. The smaller end surface area of the fiber precludes

the level of load transfer across this surface exhibited in the 30 vol.% model. The end

surface of the fiber fails to accommodate the stress build-up in the matrix in this region

resulting in increased levels of matrix plasticity. The extent of matrix material above the

fiber in the 10 vol.% model, being greater than in the 30 vol.% model, implies that for

a given applied strain, the matrix in the 10 vol.% model must transfer the subsequent

displacements a greater distance prior to encountering the fiber. This results in lower

levels of load transfer, and hence lower levels of composite strength in the 10 vol.%

model.

At low levels of applied strain (e = 0.001), the matrix material adjacent to the top

surface of the fiber experiences a stress relaxation as the fiber accommodates the applied

load. During this stage, the plastic zone grows only slightly as the majority of the load

is transferred to the fiber. At £ = 0.0045, the plastic zone experiences both radial and

axial growth with the greatest expansion occurring in the radial direction as in the 30

vol.% model. The matrix in the region well above the fiber interface exhibits a uniform

stress state of 275 to 280 MPa. Noteworthy is the lack of high and low stress zones

evident in the matrix region above the fiber in the 30 vol.% model. In the 30 vol.%

material, these zones presumably result from increased levels of matrix hydrostatic stress
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due to the higher volume of reinforcement, although this premise has not been investi-

gated.

The 10 vol.% model in the absence of residual stresses exhibits the same axial

growth of the plastic zone as in the 30 vol.% model. The fiber in this case, however,

accommodates a greater level of load transfer from the matrix than with residual stresses

present. This provides one explanation of the results presented in Figure 9 (i.e. the de-

crease in yield strength due to the presence of residual stresses in the 10 vol.% MMC

versus the increase in yield strength observed in the 30 vol.% MMC in the presence of

residual stresses). In the 10 vol.% composite, the degree of load transfer across the fiber

ends in the presence of residual stresses is much less than in the 30 vol.% composite.

Hence, while the presence of residual stresses yields greater composite strength in the

30 vol.% model, it reduces the strength in the 10 vol.% composite since the decrease in

load transfer across the lateral fiber surface is not ofTset by a corresponding increase in

load transfer across the fiber end surface.

3. Effects of Modeling Constraints

Figure 13 shows contours of effective stress for a 30 vol.% staggered fiber

model. The premise for studying the staggered fiber arrangement was the expectation

that significant stress states would be developed in the matrix in the region between

overlapping fiber ends, resulting in an important deformation mechanism operative in

an actual composite material. A comparison of Figure 11 and Figure 13 reveals a

profoundly different pattern of plastic zone development. The plot of residual effective

stress reveals a complicated deformation pattern composed of (1) plastic zones adjacent

to the fiber interface of larger magnitude than existing in the 30 vol.% aligned model,

(2) larger levels of plastic deformation in the matrix region between the lateral fiber

interface and the cell boundary and (3) regions of plastic deformation in the matrix well

away from the fiber interface that is a result of the boundary conditions imposed on the
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numerical model for the staggered fiber arrangement. A fundamental deformation

characteristic of this model in the presence of residual stresses is the growth of the plastic

zone in the matrix region above the interface first before the radial growth common in

the aligned models occurs. At higher strain levels (6 = 0.0045), the plastic regions inter-

sect followed by gross plasticity in the matrix.

The contour plots of the staggered model without residual stresses exhibits the

axial growth of the plastic zone common in the aligned models. The load transfer to the

fiber occurs more readily in this case than in either the staggered model with residual

stress or the 30 vol.% aligned model. This factor accounts for the observed increase in

yield strength and stiffness over the same model with residual stresses present

(Figure 10a). The observed increase in work-hardening rate in the staggered model with

residual stresses can be attributed to the development of hydrostatic stress pockets in the

matrix [Ref. 21] along the cell boundary that offer an increased resistance to plastic flow

over the model without residual stresses.

4. Fiber Spacing Effects

Figure 14 illustrates the effect of fiber spacing in the presence of residual

stresses on the development and growth of plastic deformation in the composite matrix.

The results indicate that side-to-side fiber spacing has the greatest impact on the level

of residual stress in the matrix as shown in Figure 14a. The plastic zone for this model

extends throughout the entire matrix with the highest stress levels occurring at the

interface. In contrast, the models with A
f
=6 and 10, respectively exhibit a plastic zone

confined to the region near the fiber interface. Figure 14c shows the stress distributions

in the composite with close end-to-end spacing. The resulting deformation pattern

reveals a plastic zone with larger radial extent than the A
f
= 6 model due to the in-

creased lateral spacing. The plastic zone on the top surface of the fiber is confined to a

relatively thin layer of material with an adjacent low-stress zone in the material at the
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Figure 14. Plastic Zone Development- Fiber Spacing Effects: Contours of effec-

tive stress for 30 vol.% aligned fiber models with cell aspect ratios of 6

and fiber aspect ratios of (a) 3, (b) 6 and (c) 10, respectively.
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relatively thin layer of material with an adjacent low-stress zone in the material at the

top of the cell. The stress states in the fiber are a maximum in the Af
= 3 model followed

by the A
f
= 6 and 10 models, respectively. These results help explain the stress-strain

behavior observed in Figure 8. Even though the material with close side-to-side spacing

initially exhibits greater levels of plastic deformation throughout the matrix, the close

proximity of adjacent fiber end surfaces produces a more pronounced effect on the

composite work-hardening rate.
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IV. CONCLUSIONS

In this study, the uniaxial stress-strain response of an SiCw/Al 6061 composite was

investigated to assess the role of thermal residual stresses on the constitutive behavior

of the material. The following summarize the relevant findings:

1. Elastic-plastic and thermo-elastic-plastic analysis using finite-element models of
fiber-reinforced metal-matrix composites can be used to predict uniaxial stress-

strain behavior given the thermo-mechanical properties of the constituent phases
as a starting point.

2. Aligned and staggered fiber models are both necessary to describe the fundamental
deformation mechanisms operative in the composite material.

3. The stiffness, yield strength and work-hardening rate of the composite increase with

increasing fiber volume fraction and fiber aspect ratio.

4. Variations in fiber spacing have little effect on composite elastic properties, but

significantly affect the work-hardening rate for close side-to-side and end-to-end

spacing.

5. The presence of residual stresses significantly impact the stress-strain behavior of

the composite, principally by affecting the load transfer characteristics between the

matrix and fiber.

6. The presence of residual stresses affect the initiation and continuation of plastic

deformation in the matrix by producing a plastic zone adjacent to the fiber-matrix

interface that, in general, expands radially outward from the lateral surface of the

fiber to the cell boundary as loading increases. The absence of residual stress, in

contrast, results in the simultaneous development of plastic zones in the matrix

above the fiber end and along the fiber corner that expand axially as load increases.

7. The lateral spacing of adjacent fibers is an important factor affecting the magnitude
and distribution of residual stresses in the composite.
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APPENDIX A. SAMPLE ADINA INPUT FILE

* THIS INPUT FILE SIMULATES THERMAL AND TENSILE LOADING OF A
* METAL-MATRIX COMPOSITE. THE PROGRAM INCLUDES COMMENTS AT
* APPROPRIATE LOCATIONS TO ILLUSTRATE SOME OF THE IMPORTANT
* FEATURES OF ADINA IN NON-LINEAR ANALYSIS.

* THE FOLLOWING BLOCK OF CODE CONTAINS ADINA CONTROL INFORMATION
DATABASE CREATE
CONTROL ORIGIN=UPPERLEFT PLOTUNIT=CM
FILEUNITS LIST=6 LOG=6 ECHO=6

* THE FOLLOWING BLOCK OF CODE CONTAINS SPECIFICATIONS FOR MODEL DEGREES OF
* FREEDOM, SOLUTION TIME PERIOD LENGTH AND TIME-STEP SIZE. THE FIRST
* "MASTER" COMMAND LINE IS USED IN ELASTOPLASTIC ANALYSIS; THE SECOND
* COMMAND SIMULATES THE QUENCH PROCESS AND THE THIRD SIMULATES THE
* TENSILE LOADING FOLLOWING THE QUENCH.
* CAN BE USED IN DURING A GIVEN RUN, THE OTHER MUST BE COMMENTED OUT USING
* A ' *

'

.

MASTER IDOF=100111 ITP56=0 NSTEP=6 DT=1.
^MASTER IDOF=100111 ITP56=2 NSTEP=1 DT=1.
^MASTER IDOF=100111 ITP56=2 NSTEP=6 DT=1.

* THE FOLLOWING BLOCK OF CODE CONTAINS THE KINEMATIC AND ITERATION METHOD
* SPECIFICATIONS. AUTOMATIC-ATS IS A FEATURE USED IN NON-LINEAR ANALYSIS
* TO ASSIST IN ACHIEVING THE REQUIRED TOLERANCE FOR THE OUT-OF -BALANCE
* ENERGY NORM.
KINEMATICS DISP=LARGE STRAINS=LARGE
ITERATION METHOD=FULL-NEWTON LINE-SEARCH=YES
AUTOMATIC-ATS N=10

* THE FOLLOWING COMMANDS RELATE TO THE PROGRAM OUTPUT. COMMENT IN THE
* "WORKSTATION" COMMAND IF A HARDCOPY OF THE MODEL CONFIGURATION IS
* DESIRED.
HEADING 'VF=30% AF=3 AC=3'
PRINTOUT VOLUME=MAX
PORTHOLE FORMATTED=YES FILE=60
'^WORKSTATION SYSTEM=4 DEVICE=0 OPTION=0

* THE FOLLOWING CODE SPECIFIES THE NATURE OF THE APPLIED TEMPERATURE LOAD.
* NUMBERS TO THE LEFT ARE TIME VALUES AND THE NUMBERS TO THE RIGHT ARE THE
* VALUES OF TEMPERATURE CHANGE FROM THE INITIAL TEMPERATURE OF THE MODEL.
TIMEFUNCTION 1

0. 0.

1.0 -505.0

* THE FOLLOWING TIME FUNCTIONS REPRESENT THE DISPLACEMENT LOADING SEQUENCE
* THE NUMBERS TO THE RIGHT ARE DISPLACEMENTS FROM THE REFERENCE LENGTH OF
* THE MODEL THAT CORRESPOND TO A GIVEN LOGARITHMIC STRAIN TO BE USED IN
* THE STRESS-STRAIN CURVE. NOTE: THE DISPLACEMENTS FOR THE MODEL WITH
* RESIDUAL STRESSES START AT TIME=2. SINCE THE QUENCH PROCESS OCCURRED
* FROM TIME to 1.0. IN ADDITION, THE DISPLACEMENTS ARE INITIALLY
* NEGATIVE DUE TO THE QUENCH PROCESS. THE SUBSEQUENT DISPLACEMENTS

47



* ARE ADDED TO THE NEW REFERENCE. THE DISPLACEMENT SPECIFICATIONS
* IN ADINA ARE ALWAYS ABSOLUTE DISPLACEMENTS, MEANING THAT A RELATIVE
* CHANGE IN DISPLACEMENT CANNOT BE INPUT.
TIMEFUNCTION 2

* DISPLACEMENTS FOR ALIGNED MODEL WITH RESIDUAL STRESSES
0.0 0.0
2.0 -.015496
3.0 -.013248
4.0 -.00875
5.0 0.00702
6.0 0.01124
7.0 0.06154

TIMEFUNCTION 3
* DISPLACEMENTS FOR ALIGNED MODEL WITHOUT RESIDUAL STRESSES

0.0 0.0
1.0 0. 00448
2.0 0. 00897
3.0 0. 01796
4.0 0. 03598
5.0 0. 04502
6.0 0.0905

*
* THE FOLLOWING BLOCK OF CODE INPUTS THE NODAL COORDINATES AND SPECIFIES
* THE NUMBER OF ELEMENTS DESIRED BETWEEN NODES.
SYSTEM 1 TYPE=CARTESIAN
COORDINATES

ENTRIES NODE Z

1 1. 49 4. 48
2 1. 4. 48
3 0. 4. 48

• 4 1. 49 3.

5 1. 3.

6 0. 3.

7 1. 49 2. 24
8 1. 2. 24
9 0. 2. 24

10 1. 49 0.

11 1. 0.

12 0. 0.

*

LINE STRAIGHT 1 2 EL=3
LINE STRAIGHT 2 3 EL=6
LINE STRAIGHT 4 5 EL=3
LINE STRAIGHT 5 6 EL=6
LINE STRAIGHT 7 8 EL=3
LINE STRAIGHT 8 9 EL=6
LINE STRAIGHT 10 11 EL=3
LINE STRAIGHT 11 12 EL=6

LINE STRAIGHT 1 4 EL=9
LINE STRAIGHT 4 7 EL=5
LINE STRAIGHT 7 10 EL=14
LINE STRAIGHT 2 5 EL=9
LINE STRAIGHT 5 8 EL=5
LINE STRAIGHT 8 11 EL=14
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LINE STRAIGHT 3 6 EL=9
LINE STRAIGHT 6 9 EL=5
LINE STRAIGHT 9 12 EL=14
*

* THE FOLLOWING CODE DEFINES MATERIAL PROPERTIES TO BE USED IN THE MODEL.
* THE FIRST MATERIAL SPECS CORRESPOND TO THE FIBER AND THE SECOND TO THE
* ALUMINUM MATRIX. EACH SET CONTAINS THE CORRESPONDING COMMANDS FOR
* ELASTOPLASTIC ANALYSIS. THE "TREF" COMMAND MUST BE SET TO 530. FOR THE
* QUENCH RUN AND 25. FOR THE SUBSEQUENT TENSILE DISPLACEMENT RUN.
MATERIAL 1 THERMO-ELASTIC TREF=530.

0.0 450E9 0.2 4. 3E-6
1000.0 450E9 0.2 4. 3E-6

^MATERIAL 1 ELASTIC E=450E9 NU=0.

2

MATERIAL 2 THERMO -PLASTIC TREF=530.
0.0 68.3E9 0.33 276E6 656E6 23. OE-6

1000.0 68. 3E9 0.33 276E6 656E6 23. OE-6
^MATERIAL 2 PLASTIC E=68. 3E9 NU=0. 33 Y=276E6 ET=656E6
*

* THE FOLLOWING CODE SELECTS GROUPS OF ELEMENTS IN THE MODEL AND ASSIGNS
* THEM PREVIOUSLY DEFINED MATERIAL PROPERTIES
EGROUP 1 TWODSOLID SUB=0 M=l
GSURF 5 6 9 8 EL1=6 EL2=5 N0DES=4
GSURF 8 9 12 11 EL1=6 EL2=14 N0DES=4
it

EGROUP 2 TWODSOLID SUB=0 M=2
GSURF 12 5 4 EL1=3 EL2=9 N0DES=4
GSURF 2 3 6 5 EL1=6 EL2=9 N0DES=4
GSURF 4 5 8 7 EL1=3 EL2=5 N0DES=4
GSURF 7 8 11 10 EL1=3 EL2=14 N0DES=4

* THE FOLLOWING CODE CONTAINS THE BOUNDARY CONDITION SPECIFICATIONS. THE
* FOLLOWING CONDITIONS ARE APPLICABLE FOR THE ALIGNED FIBER MODEL.
* APPENDIX B CONTAINS A SECTION OF CODE ILLUSTRATING THE
* APPROPRIATE MODIFICATIONS FOR THE STAGGERED FIBER MODEL.
BO 111111 NODES

12

BO 101111 NODES
10 / 11

34 TO 40
BO 110111 NODES

3/6/9
89 TO 112

CONSTRAINT
1333 TO 2333

13 3 3 3 TO 19 3 3 3

1 2 10 2

4 2 10 2

7 2 10 2

41 2 10 2 TO 64 2 10 2
it

* THE FOLLOWING COMMANDS DEFINE THE TYPE OF LOADING TO BE APPLIED TO THE
* MODEL. THESE COMMANDS ARE USED IN CONJUNCTION WITH THE TIMEFUNCTION
* COMMANDS DISCUSSED PREVIOUSLY. IT IS IMPORTANT TO NOTE THAT IF THE
* APPLIED LOADING IS STATIC (I.E. TIME INDEPENDENT) THEN THE TIME VALUES
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* IN THE TIME FUNCTION COMMAND REPRESENT LOAD STEPS.
LOADS TEMPERATURE TREF=530

1 1.0 1 TO 280 1.0 1

LOADS DISPLACEMENT
3 3 1. 2

* THE FOLLOWING COMMANDS ALLOW THE INPUT NODE AND ELEMENT CONFIGURATION
* FOR THE MODEL TO BE DISPLAYED ON THE SCREEN AS LONG AS THE "WORKSTATION"
* COMMAND IS COMMENTED OUT.
FRAME HEADING=UPPER XSF=1. YSF=0. 5 XFMAX=22. 5 YFMAX=17.
MESH N0DES=11 ELEMENT=1
it

ADINA
END
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APPENDIX B. ADINA MODIFICATIONS FOR STAGGERED FIBER

MODEL

The following modifications are used in the ADINA input file for the staggered fiber

model analysis. Since many elements of the input file are unchanged from the aligned

model, only required modifications are presented here.

TIMEFUNCTION 4
* DISPLACEMENTS FOR STAGGERED MODEL WITH RESIDUAL STRESSES

0.0 0.0
2.0 -.01075
3.0 -.00851
4.0 -.00401
5.0 0.00500
6.0 0.00952
7. 0. 03225

*

TIMEFUNCTION 5

* DISPLACEMENTS FOR STAGGERED MODEL WIT RESID
0.0 0.0
1.0 0.00224
2.0 0.00449
3.0 0.00898
4.0 0.01799
5.0 0.02251
6.0 0.04525

* BOUNDARY CONDITIONS
BO 101111 NODES

7

BO 110111 NODES
3/6/9/12
91 TO 115

CONSTRAINT
* TOP CELL SURFACE REMAINS PLANAR AND IS SLAV TO NODE 12

1 3 12 3 -1.0 TO 3 3 12 3 -1.0

13 3 12 3 -1. TO 19 3 12 3 -1.

* BOTTOM CELL SURFACE REMAINS PLANAR
10 3 12 3 1.0 TO 11 3 12 :3 1.0
34 3 12 3 1.0 TO 40 3 12 :3 1.0

* AXIAL SIDEWALL CONSTRAINT
41 3 65 3 -1.

42 3 64 3 -1.0
43 3 63 3 -1.0
44 3 62 3 -1.0
45 3 61 3 -1.0
46 3 60 3 -1.0
47 3 59 3 -1.0
48 3 58 3 -1.0
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4 3 57 3 -1.0
49 3 56 3 -1.0
50 3 55 3 -1.0
51 3 54 3 -1.0
52 3 53 3 -1.0

* LOAD COMMANDS
LOADS DISPLACEMENT

12 3 -1.0 4
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APPENDIX C. DATA REDUCTION PROGRAMS

The following programs were used to reduce the ADINA output file to data points

to be plotted on stress-versus-strain curves.

C THIS PROGRAM READS THE ADINA OUTPUT FILE AND COMBINES THE STRESS VALUES
C WITH THE ELEMENTAL VOLUMES TO PRODUCE A VOLUME -AVERAGED VALUE OF AXIAL
C STRESS.
C

PROGRAM TEST
CALL INIT
CALL READ
STOP
END

C

C THIS SUBROUTINE ZEROS OUT ARRAYS AND READS THE VOLUME DATA FILE.
C THE PARAMETER VARIABLES ARE: NUMBER OF ELEMENTS (NEL), NUMBER OF LOAD
C STEPS (LC) AND NUMBER OF ELEMENTS IN THE FIBER (NFBR).
C

SUBROUTINE INIT
PARAMETER (NEL=252,LC=6 ,NFBR=114)
REAL SZ( 1: NEL, 1: 4) ,SZBAR( 1: LC) ,V( 1: NEL) ,FBR( 1: NFBR)
COMMON // SZ,SZBAR,V,FBR

C

DO 10 1=1, NEL
V(I)=0.0
DO 15 J=l,4
SZ(I,J)=0.0

15 CONTINUE
10 CONTINUE
C

DO 20 K=1,LC
SZBAR(K)=0.
FBR(K)=0.0

20 CONTINUE
C

OPEN (01,STATUS='OLD')
DO 25 L=1,NEL
READ (01,*,END=50) V(L)

25 CONTINUE
C

50 PRINT *, 'EOF VOL. DAT
1

C
RETURN
END

C
C THIS SUBROUTINE READS THE FORMATTED ADINA OUTPUT FILE, AFTER THE HEADERS

C HAVE BEEN REMOVED, AND CALCULATES THE AVERAGE Z STRESS IN EACH ELEMENT

C BY AVERAGING THE FOUR STRESS VALUES AT THE GAUSS POINTS. THIS AVERAGE
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C STRESS IS MULTIPLIED BY ITS ELEMENTAL VOLUME AND SUMMED OVER THE ENTIRE
C VOLUME OF THE MODEL. THE OUTPUT IS TWO FILES: ONE CONTAINING THE
C COMPOSITE STRESS VALUES AT THE GIVEN LOAD LEVELS AND ONE CONTAINING
C THE STRESS LEVELS IN THE FIBER AT THE SAME LOAD LEVELS.
C

SUBROUTINE READ
PARAMETER (NEL=252,LC=6 , V0L=4. 97,NFBR=114)
REAL SZ( 1: NEL, 1: 4) ,SZBAR( 1: LC) ,V( 1: NEL) ,FBR( 1: NFBR)
CHARACTER*8 STATE
COMMON // SZ,SZBAR,V,FBR

C
OPEN (02 5

STATUS= ,

OLD
I

)

OPEN (03,FILE='V30.DAT' , STATUS= ' NE
W

'

)

OPEN ( 04, FILE=* V30_FBR.DAT' ,STATUS='NEW'

)

C
DO 20 K=1,LC
SUM=0.
DO 25 L=1,NEL
READ (02,*) IEL
READ (02,21) INR, INS, STATE, SX.SY, SZ(L, 1) ,SYZ ,SVM,SMAX
READ (02,*) SYS,SMIN
READ (02,*)
READ (02,21) INR,INS,STATE,SX,SY,SZ(L,2),SYZ,SVM,SMAX
READ (02,*) SYS,SMIN
READ (02,*)
READ (02,21) INR,INS,STATE,SX,SY,SZ(L,3),SYZ,SVM,SMAX
READ (02,*) SYS,SMIN
READ (02,*)
READ (02,21) INR,INS,STATE,SX,SY,SZ(L,4),SYZ,SVM,SMAX
READ (02,*) SYS,SMIN
READ (02,*,END=50)
READ (02,*,END=50)

21 FORMAT (14X,I1,3X,I1,5X,A8,5X,4(E12.5,2X),5X,2(E12.5,4X))
C

SBAR=((SZ(L,l)+SZ(L,2)+SZ(L,3)+SZ(L,4))/4. 0)*V(L)
C

C

SUM=SUM+SBAR

IF (L. EQ. NFBR) THEN
FBR(K)=SUM/VOL
ENDIF

25 CONTINUE
SZBAR(K)=SUM/VOL

20 CONTINUE
C
50 PRINT *, 'EOF DETECTED*
C

DO 35 N=1,LC
WRITE (03,*) SZBAR(N)
WRITE (04,*) FBR(N)

35 CONTINUE
RETURN
END
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C NFX
C NFY
C NFM

C THIS PROGRAM CALCULATES ELEMENTAL VOLUMES BASED ON THE GEOMETRY OF THE
C FINITE -ELEMENT MODEL. THE REQUIRED INPUTS ARE:
C NX: NUMBER OF ELEMENTS IN THE MODEL IN THE HORIZ. DIRECTION.
C NY: NUMBER OF ELEMENTS IN THE MODEL IN THE VERT. DIRECTION.

NUMBER OF FIBER ELEMENTS IN THE HORIZ. DIRECTION.
NUMBER OF FIBER ELEMENTS IN THE VERT. DIRECTION.
NUMBER OF ELEMENTS IN THE VERT. DIRECTION FROM THE

C MODEL MIDPOINT TO THE FIBER END.
C NEL: NUMBER OF TOTAL ELEMENTS IN THE MODEL (NX x NY).
C XF: RADIUS OF FIBER DIVIDED BY NFX.

C XM: (RADIUS OF CELL - RADIUS OF FIBER) DIVIDED BY (NX-NFX).
C YF1: (LENGTH OF FIBER - 0. 5*LENGTH OF CELL) DIVIDED BY NFM.
C YF2: 0.5*LENGTH OF CELL DIVIDED BY (NFY-NFM).
C YM: (LENGTH OF CELL - LENGTH OF FIBER) DIVIDED BY (NY-NFY)
C

PROGRAM CVOL
PARAMETER (NX=9 ,NY=27 ,NFX=6,NFY=18 ,NFM=4,NEL=243,

& XF=. 1666, XM=. 1633, YF1=. 19,YF2=. 16,YM=. 1644)
REAL V0L(1:NEL),V(1:NX,1:NY)

C

C INITIALIZE THE MATRICES
DO 10 1=1, NX
DO 10 J=1,NY

10 V(I,J)=0.0
C

DO 15 1=1, NEL
15 VOL(I)=0.0
C

C CONSTRUCT THE V MATRIX AND MAP IT INrO THE VOL MATRIX.
C *** TOP FIBER GROUP ***

NID=1
DO 20 L1=NFY,NFY-NFM+1,-1
DO 21 K1=NFX,1,-1
V(K1,L1)= ((XF*K1)**2 - (XF*(Kl-l))**2)*YFl/2.
V0L(NID)=V(K1,L1)
NID=NID+1

21 CONTINUE
20 CONTINUE
C *** BOTTOM FIBER GROUP ***

DO 200 L10=NFY-NFM,1,-1
DO 210 K10=NFX,1,-1
V(K10,L10)= ((XF*K10)**2 - (XF*(K10-l))**2)*YF2/2.
VOL(NID)=V(K10,L10)
NID=NID+1

210 CONTINUE
200 CONTINUE
C *** TOP RIGHT MATRIX ELEMENT GROUP ***

DO 22 L2=NY,NFY+1,-1
DO 23 K2=NX,NFX+1,-1
V(K2,L2)=((XM*(K2-NFX)+XF*NFX)**2-

& (XM*(K2-l-NFX)+XF*NFX)**2)*YM/2.
VOL(NID)=V(K2,L2)
NID=NID+1

23 CONTINUE
22 CONTINUE
C *** TOP LEFT MATRIX ELEMENT GROUP ***
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DO 24 L3=NY,NFY+1,-1
DO 25 K3=NFX,1,-1
V(K3,L3)= ((XF*K3)**2 - (XF(K3-l))**2)*YM/2.
VOL(NID)=V(K3,L3)
NID=NID+1

25 CONTINUE
24 CONTINUE
C *** MIDDLE MATRIX ELEMENT GROUP ***

DO 26 L4=NFY,NFY-NFM+1,-1
DO 27 K4=NX,NFX+1,-1
V(K4,L4)= ((XM*(K4-NFX)+XF*NFX)**2 -

& (XM*(K4-l-NFX)+XF*NFX)**2)*YFl/2.
V0L(NID)=V(K4,L4)
NID=NID+1

27 CONTINUE
26 CONTINUE
C *** BOTTOM MATRIX ELEMENT GROUP ***

DO 260 L40=NFY-NFM,1,-1
DO 270 K40=NX,NFX-fl,-l
V(K40,L40)= ((XM*(K40-NFX)+XF*NFX)**2 -

& (XM*(K40-l-NFX)+XF*NFX)**2)YF2/2.
VOL(NID)=V(K40,L40)
NID=NID+1

270 CONTINUE
260 CONTINUE
C *** CHECK TO ENSURE THE SUM OF THE ELEMENTAL VOLUMES MATCH THE ***

C *** CALCULATED MODEL VOLUME AND WRITE THE OUTPUT TO A FILE. ***
VNUM= ( ( ( XF*NFX ) +( Xh* ( NX -NFX ) )

)

**2 ) * ( ( YF 1*NFM )

+

& (YF2*(NFY-NFM))+(YM*(NY-NFY)))/2.
C

VCALC=0.
DO 30 N=1,NEL
VCALC=VCALC+VOL(N)

30 CONTINUE
PRINT *, 'VNUM=" VNUM
PRINT *, 'VCALC=

f

,VCALC
DO 35 M=1,NEL

35 WRITE (10,*) VOL(M)
C

STOP
END
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